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An experimental investigation of the relative
diffusion of particle pairs in three-dimensional
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The particle tracking (PT) technique is used to study turbulent diffusion of particle
pairs in a three-dimensional turbulent flow generated by two oscillating grids. The
experimental data show a range where the Richardson–Obukhov law 〈r2〉 = Cεt3 is
satisfied, and the Richardson–Obukhov constant is found to be C = 0.5. A number of
models predict much larger values. Furthermore, the distance–neighbour function is
studied in detail in order to determine its general shape. The results are compared with
the predictions of three models: Richardson (1926), Batchelor (1952) and Kraichnan
(1966a). These three models predict different behaviours of the distance–neighbour
function, and of the three, only Richardson’s model is found to be consistent with the
measurements. We have corrected a minor error in Kraichnan’s (1996a) Lagrangian
history direct interaction calculations with the result that we had to increase his
theoretical value from C = 2.42 to C = 5.5.

1. Introduction
In a now classical paper Richardson (1926) introduced the concept of relative

turbulent diffusion and offered the first theoretical treatment. In order to quantify the
growth of a cloud in a turbulent flow Richardson introduced the distance–neighbour
function q(r, t), which is defined as the probability density function at time t for the
separation r between two fluid particles chosen randomly from a puff released (or
marked) at time t = 0. The puff can be described by continuous concentration field
c(x, t), which we may normalize so that

∫
c(x, t) d3x = 1, and we derive the following

equation:

q(r) =

∫
〈c(x)c(x+ r)〉 d3x, (1.1)

where 〈 〉 denotes the ensemble average. When the puff is initially small q does not de-
pend on the detailed initial conditions and thus becomes a universal function (Monin
& Yaglom 1975). Assuming homogeneity, isotropy and stationarity, Richardson pro-
posed a simple first-order closure for q

∂q(r, t)

∂t
=

1

r2

∂

∂r
r2K

∂

∂r
q(r, t), (1.2)

where K = K(r, t) is a diffusivity, and r = |r| is the absolute value of the separation
vector r. (Actually Richardson used a one-dimensional equation, but that does not
change results qualitatively.) Richardson argued further that K is proportional to r4/3.
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This is consistent with Kolmogorov scaling for the inertial subrange, where K takes
the form

K = ε1/3 r4/3 F(ε1/3r−2/3t). (1.3)

Here ε is the mean rate of dissipation of specific kinetic energy and F is a universal
function of the dimensionless argument s = ε1/3r−2/3t. Thus Richardson’s model is the
case where F is a constant and K is independent of time. Using (1.3) equation (1.2)
has the following solution:

q(r, t) =
1

ε3/2t9/2N
G(ε1/3r−2/3t), (1.4)

where N is a normalization constant and

G(s) = exp

[
9

4

∫ s

1

1

x2F(x)
dx

]
. (1.5)

Another simple consequence of Kolmogorov scaling is the Richardson–Obukhov
law

〈r2〉 = Cεt3, (1.6)

where C is the Richardson–Obukhov constant. The factor t3 is due to Richardson,
while ε is due to Obukhov (1941), hence the name. Using (1.5) it follows that

C =
6π

N

∫ ∞
0

s−17/2 G(s) ds. (1.7)

Batchelor (1952) distinguished three regimes: a regime dominated by the initial
velocity difference; the inertial-range regime where (1.6) is valid; and a ‘normal’
diffusion regime at large separations where the movements of the two particles are
uncorrelated. In the following we concentrate on the inertial-range regime.

Of the many attempts to improve and/or substantiate Richardson’s theory we limit
discussions to two well-known models. The first is due to Batchelor (1952), who
argued against K depending on the instantaneous separation variable r and favoured
a purely time-dependent diffusivity. This is equivalent to setting F(s) = s2. The second
model is Kraichnan’s (1996a) LHDI (Lagrangian history direct interaction) theory,
which yields a diffusion equation for q with a diffusivity of the form (1.3). In LDHI
the function F(s) behaves like F(s) ∝ s for small s and approaches a constant value
for s → ∞. The three models predict quite different behaviours of the distance–

neighbour function. In Richardson’s model q behaves like e−|r|2/3 with a notable cusp
at r = 0. In contrast, Batchelor’s q is smoothly Gaussian. Kraichnan’s q looks like
Richardson’s for small separations (s → ∞), but its tails are different behaving like

e−|r|4/3 . All three models are consistent with the Richardson–Obukhov law, but C is
an adjustable parameter in the models of Richardson and Batchelor. LDHI has no
adjustable parameters and hence it predicts C .

Fung et al. (1992) pointed out the substantial disagreement between theoretical
predictions of the Richardson–Obukhov constant, spanning three orders of magnitude.
LDHI (Kraichnan 1966a) yields C = 5.5 (we have corrected Kraichnan’s original value
C = 2.42, see the Appendix). EDQNM (the eddy-damped quasi-normal Markovian
model) yields C = 3.5 (Larchevêque & Lesieur 1981). Novikov (1963) estimated
C = 1.8.

For random flight models, of which there are several, C depends on the choice
of model parameters. Reviewing a family of such models Borgas & Sawford (1994)
found 0.9 < C < 3.4 for Thomson’s (1990) model and 0.8 < C < 1.8 for their own



Relative diffusion in turbulence 209

model. Other suggestions are: C = 6 × 0.534 = 3.2 (Mikkelsen, Larsen & Pecseli
1987), C ≈ 0.5 (Kristensen & Kirkegaard 1987), C = 1.7 and 0.17 (Ott 1992), C = 0.1
(Fung et al. 1992).

Experimental values of C are scarce and based on indirect analyses. Tatarski (1960)
found C = 0.06, which, according to Fung & Vassilicos (1998), can only be regarded
as an order-of-magnitude estimate ‘fraught with uncertainties.’ Byzova, Garger &
Ivanov (1970) used (1.6) and Novikov’s value C = 1.8 to estimate ε from data for
elevated smoke plumes. The resulting values were slightly larger than values of ε
derived independently from wind profiles. Turning the argument around, the data
are consistent with C = 1.7. Several other experiments demonstrate a range where
〈r2〉 ∝ t3, but with no measurements of ε (Gifford 1977). Hanna & Briggs (1982)
recommends σ2

y = 1 εt3 for atmospheric puffs. Assuming isotropy this implies C = 6
where a factor of three comes from the three spatial components and a factor of two
from the conversion from dispersion of two particles relative to the centre of gravity
to dispersion relative to each other. It thus appears that not even the second moment
of the distance–neighbour function is known with any appreciable degree of accuracy.

Still less is known about the shape of q in three-dimensional flow, and there are di-
verging opinions. Sullivan (1971), investigating fluorescent dye plumes in Lake Huron,
found support for Kraichnan’s results. The measurements were taken by means of a
flourometer mounted on a boat traversing the plume at high speed. Sullivan correlated
the measurements and interpreted the results as a measure of

∫∫
q(x, y, z, t) dxdz, the

probability density function for the y-component of the separation vector. This inter-
pretation is questionable given the fact that the dye was released continuously and
not as a small and instantaneous puff. The finite spatial resolution of the fluorometer
may have also influenced the results and biased the conclusion. Somewhat similar
experiments were performed by Jørgensen (1993), who studied passive smoke plumes
from ground releases in the atmospheric surface layer. A lidar was used to obtain in-
stantaneous concentration profiles along a horizontal line perpendicular to the plume
axis, and the correlation function p(y, z) =

∫ 〈c(x, y + y′, z)c(x, y′, z)〉 dy′ (with z ∼ 0)
was analysed and compared with Richardson’s and Batchelor’s distance–neighbour
functions. Jørgensen found p to be definitely peakier around y = 0 than Batchelor’s
Gaussian, solution and consistent with Richardson’s, taking into account the finite
spatial resolution of the lidar. In a flume experiment Virant & Dracos (1997) found
q to be close to Gaussian, in agreement with Batchelor’s model. However, the flow
was strongly sheared, the puffs studied were larger than the integral length scale of
the turbulence, and they were not initially small. Direct numerical simulations of
two-particle dispersion were performed by Yeung (1994), who determined q for very
long t (43 times the Lagrangian timescale). This is well into the normal diffusion
regime where a Gaussian q is expected (and was found).

Recently Jullien, Paret & Tabeling (1999) took measurements in two-dimensional
turbulence. PIV (particle image velocimetry) was used to measure the whole velocity
field and then this was used to compute fluid particle pair trajectories. The detailed
distance–neighbour functions obtained were found to be in good agreement with
Richardson’s model and inconsistent with Batchelor’s model. The present experimental
study is similar to this study except that the flow is three-dimensional.

2. The experiment
Three-dimensional particle tracking (PT) is basically a stereometric method yielding

trajectories of small particles added to a fluid. A detailed description of the techni-
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Figure 1. The basic system with the tank, the two grids and the four CCD cameras.
The box inside the tank is the measuring volume.

calities can be found in Mann, Ott & Andersen (1999). Hence, only brief summary
of the experimental design is given here.

2.1. Apparatus

A water tank measuring 320× 320× 450 mm3 was used for the experiment. The tank
was equipped with two grids placed at the top and at the bottom and turbulence
was generated by oscillating the grids. The stroke S (peak-to-peak motion) of the
grids was set to 50 mm in all runs, while the oscillation frequency F was varied
in order to vary the Reynolds number. The average distance between the grids is
approximately 300 mm. Two grids are better than one, because a single grid generates
a strong secondary flow. The two-grid arrangement has the additional advantage that
the spatial variations of turbulence characteristics are small in the region near the
plane of symmetry midway between the grids (Dracos 1996).

Video images were taken by four synchronized CCD cameras through two windows
in the tank, see figure 1. The four cameras overlook a central volume of the tank
measuring roughly 150× 150× 150 mm3.

The light source was a Xenon discharge tube yielding 50µs flashes at a rate of
25 flashes per second synchronous with the cameras. With a discharge energy of
4 J per flash images with good contrast were obtained. The analog output from the
cameras was digitized by two computers equipped with commercial frame grabbers
and hardware compression cards, and output from the frame grabbers was written
continuously to two hard disks. A conventional interlaced technique was used with a
camera speed of 50 frames (odd/even line half images) per camera per second. This
yields 25 fields (full images) per camera per second. Since both frames of a field are
actually exposed by the same flash, it is effectively a 25 Hz non-interlaced technique
(Dracos 1996).

The water was seeded with spherical Polystyrene particles with diameters in the
range 500–600 µm. A heat treatment was applied to the particles in order to adjust
their density to that of the water.

On the raw images particles appear as white dots on a black background. Each dot is
two or three pixels wide, which enables the dot centre to be determined with sub-pixel
accuracy (Dracos 1996). A dot on an image corresponds to a particle located some-
where on a straight line (ray) inside the tank, and in order to translate dots into lines,
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images were taken of an object with known geometry. The object was a transparent
box made from 2 mm Perspex sheets with a square mesh of visible marks on each side.
The meshes are easily identified on an image and hence each pixel can be associated
with a line inside the box. Due to refraction at the tank windows and lens imperfec-
tions the translation from pixel positions to lines inside the tank is slightly nonlinear.
The calibration box was removed from the tank before the actual experiments.

2.2. Tracking procedure

The tracking procedure can be divided into three steps (Malik, Dracos & Papantoniou
1993). The first step is to determine dot positions. The second step is to match dots
on the four simultaneous images by identifying intersection points in three dimension.
Due to experimental errors, the four lines never intersect exactly at one point and,
hence, an ad hoc strategy is involved in the selection of best matches. The result of
step two is a three-dimensional picture with corresponding three-dimensional particle
positions. The third step is to track the particles, i.e. to identify the individual particle
trajectories in a sequence of three-dimensional pictures. The tracking is based on a
forecasting strategy. More details on the strategies for matching and tracking are
described by Mann et al. (1999), see also Dracos (1996).

The tracking procedure outlined above is very similar to that of Malik et al. (1993).
The main difference is that we base the tracking (step three) on the three-dimensional
pictures, while Malik et al. base it on the separate two-dimensional images and thus
perform three-dimensional matching as the last step. We prefer to use the three-
dimensional pictures for tracking, because they contain more information than single
two-dimensional images.

Several factors affect the accuracy of the determination of particle positions, but
roughly they fall into two categories: distortion and jitter. Distortion is caused e.g. by
misalignment of the dots on the calibration box and can be characterized as spatially
coherent and persistent from picture to picture. Distortion affects absolute spatial
positions, and consequently it is less important for the determination of velocities and
other quantities based on measurements of short distances. Jitter can be caused by
electronic noise in the synchronization signals, mechanical vibrations and errors in
the determination of dot centres. Mechanical vibrations can be eliminated by turning
off grid oscillations and record tracks of particles that move very slowly. In an al-
most laminar flow the trajectories are necessarily smooth, and jitter caused by other
factors than vibrations can be determined. We find that the r.m.s. value of coordinate
jitter is no more than 20 µm, or less than one tenth of the size of a pixel (300 µm).
When the grids are operating there will be mechanical vibrations and possibly also
electromagnetic interference from the motor. Assuming that the jitter is uncorrelated
from picture to picture, the magnitude can be estimated from measured acceleration
auto-correlation functions (see Mann et al. 1999. This method yields r.m.s. values up
to about 60 µm or 0.2 pixels.

3. Results
Below results from six runs are reported. Table 1 gives an overview of some of the

basic turbulence parameters and further details may be found in Mann et al. (1999).

3.1. Flow characteristics

The one-point statistics reveals that σu ≈ σv and σw ≈ 1.25σu, where w is the velocity
component perpendicular to the grids. There is a small secondary flow of the order
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Figure 2. Measured longitudinal (dots) and transverse (circles) structure functions from run 17
(Fgrid = 2 Hz), 15 (3 Hz) and 21 (3.5 Hz). The solid curves are a fit of (3.9) to the data and the
corresponding inertial-subrange expression (3.4). The dashed curves are (3.10) and (3.5) using the
parameters from the fit.

of u ≈ 0.25σu. The secondary flow strengthens if the grids do not have exactly the
same distance to the walls.

The longitudinal second-order structure function f is defined as

f(r) ≡ 〈δv2
‖(r)〉, (3.1)

where δv‖(r) = δv(r)·r/r is the radial component of the relative velocity δv(r) of a pair
of particles with separation vector r. When f(r) is determined from data an average
is taken over all separations r with |r| = r for particle pairs inside the measuring
volume. This definition of f makes it an isotropic quantity, even for an anisotropic
flow. The transverse structure function g is defined as

g(r) ≡ 1
2
(〈δv2(r)〉 − 〈δv2

‖(r)〉). (3.2)

Again the average includes averaging over all directions. Due to the isotropy of the
definitions of f and g it follows solely from incompressibility that (Mann et al. 1999)

r〈δa‖(r)〉 = r f′(r) + 2f(r)− 2g(r), (3.3)

where δa‖(r) is the radial component of the relative acceleration. For a globally
homogeneous flow the left-hand side of (3.3) vanishes, and we are left with a well-
known relation, usually derived as a consequence of isotropy of the flow.
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Kolmogorov (1941b) showed that for inertial-subrange distances

f(r) = CK(εr)2/3. (3.4)

Using (3.3) with 〈δa‖(r)〉 = 0 (3.4) implies

g(r) = 4
3
f(r). (3.5)

CK is the Kolmogorov constant. Through a review of many sources Monin &
Yaglom (1975) found that CK ≈ 2.0. Later Chasnov (1991) found that slightly newer
experiments both in the atmosphere and in the laboratory scatter values between
1.75 and 2.75 with an average of CK ≈ 2.1. Chasnov also compiled predictions from
DNS (and a few LES), having roughly the same Reynolds numbers as the flow in the
middle of our tank. These values scatter between 2.1 and 3.2 with a single outlier at
5 and tend to cluster around CK ≈ 2.6. A newer collection of high Reynolds number
experiments performed both in the atmosphere and in a large wind tunnel in the
Reynolds number range Rλ = (2.0–12.7)× 103 show a decrease of CK with Reynolds
number, starting at CK = 2.5 at the lower limit and CK = 2.1 at the highest Rλ
(Praskovsky & Oncley 1994). It seems that the Monin & Yaglom (1975) value of 2.0
is plausible, but might be somewhat low, at least for lower Reynolds numbers, and
that CK = 2.5 could be just as good. The theoretical LDHI value is 2.33 (Kraichnan
1966b).

The energy spectrum corresponding to (3.4) and (3.5) is

E(k) = αε2/3k−5/3, (3.6)

where k is the wavenumber, and the relation between CK and α, the spectral Kol-
mogorov constant, is (Monin & Yaglom 1975)

CK = 27
55

Γ( 1
3
)α ≈ 1.315α. (3.7)

We find that the energy spectrum proposed by von Kármán (1948),

E(k) = αε2/3L5/3 (Lk)4

(1 + (Lk)2)17/6
, (3.8)

where L is a length scale, fits measured data well. It can be shown (assuming isotropy
and incompressibility) that the corresponding structure functions are

f(r) =
18

55

π1/222/3

Γ( 5
6
)
αε2/3

{
21/3π

31/2Γ( 2
3
)
−
( r
L

)1/3

K1/3

( r
L

)}
(3.9)

and

g(r) =
18

55

π1/222/3

Γ( 5
6
)
αε2/3

{
21/3π

31/2Γ( 2
3
)

+
1

2

( r
L

)4/3

K2/3

( r
L

)
−
( r
L

)1/3

K1/3

( r
L

)}
,

(3.10)

and that these reduce to (3.4) and (3.5) in the limit r → 0. In (3.9) and (3.10) Kn is a
modified Bessel function of the second kind.

Examples of measured structure functions are shown in figure 2. We have fitted
data for f to (3.9) in order to obtain αε2/3 and L. These parameters are in turn used to
calculate g from (3.10), which is equivalent to using (3.3) with 〈δa‖〉 = 0. The dashed
curves in the figure therefore represent predictions of g from the measurements of f,
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Run Fgrid αε2/3 L σ Lint ε τη η λ Rλ
(Hz) (mm4/3 s−2) (mm) (mm s−1) (mm) (mm2 s−3) (s) (mm) (mm)

15 2.96 40 29 16 22 135 0.081 0.27 5.1 93
16 2.97 45 28 17 21 160 0.075 0.26 4.9 91
17 2.00 24 29 12 22 62 0.120 0.33 5.8 81
20 3.50 65 29 21 22 279 0.056 0.22 4.5 104
21 3.45 56 28 19 21 225 0.063 0.24 4.6 97
22 2.00 25 27 12 20 65 0.117 0.32 5.6 78

Table 1. Summary of the derived parameters from the second-order structure function.

and clearly they fit the measured values of g very well. Using a plausible value of α
(or CK) this procedure determines ε.

The advantage of this method of obtaining ε is that the second-order structure
function can be determined fairly accurately. It is, however, an indirect method
which depends on the empirical constant CK , and alternatives have been considered.
Thus it would seem natural to use an exact relation such as Kolmogorov’s (1941a)
four-fifths law

〈δv3
‖(r)〉 = − 4

5
εr. (3.11)

Unfortunately this is valid only for Rλ →∞ and we are far below that limit. We find
the remarkably simple relation

〈δv(r) · δa(r)〉 = −2ε (3.12)

much more useful. A proof based only on local homogeneity and global stationarity
is given by Mann et al. (1999). These assumptions are weaker than those required
to prove (3.11). Note also that an average over directions is not implied in (3.12).
Experimental data show that 〈δv(r) · δa(r)〉 is indeed reasonably independent of both
the direction and the absolute value of r even when r is well outside the inertial range
(Mann et al. 1999).

The discrepancy between dissipation rates determined from (3.12) and from the
second-order structure function is typically 20%. We take this as an indication of the
level of uncertainty in the determined values of ε.

3.1.1. Derived quantities

The parameters αε2/3 and L obtained by the fit to (3.9) are shown in table 1. From
these parameters we can calculate the variance of one component of the velocity
through the identity

3

2
σ2 =

∫ ∞
0

E(k) dk =
27π1/2Γ( 1

3
)

110Γ( 5
6
)
αε2/3L2/3, (3.13)

where E(k) is the von Kármán form (3.8). The integral scale is defined via the
correlation function R‖(r) = σ2 − 1

2
〈δv2

‖(r)〉 as

Lint ≡
∫ ∞

0

R‖(r) dr =
πΓ( 5

6
)

Γ( 1
3
)
L. (3.14)

The energy dissipation ε is finally obtained from αε2/3 through the relation (3.7) using
Monin & Yaglom’s 1975 value CK = 2.0.
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The Kolmogorov length and time are defined by

η =

(
ν3

ε

)1/4

, τη =
(ν
ε

)1/2

, (3.15)

where the kinematic viscosity for water at 27.5 ◦C is ν = 0.89 mm2 s−1. According to
Hinze (1975) the Taylor microscale λ may be written as

λ =

(
15νσ2

ε

)1/2

(3.16)

and the Taylor microscale Reynolds number as

Rλ =
λ2

151/2η2
. (3.17)

All these derived quantities are shown in table 1. It is noted that the governing
equations are invariant under a rescaling of the time axis, i.e. the replacement
(F, ν, u(x, t)) 7→ (βF, βν, βu(x, βt)) where β is a number. Since the rescaling preserves
boundary conditions it implies an exact similarity of flows having the same value
of ν/F . The high Reynolds number limit ν → 0 can therefore be studied by letting
F → ∞. In this limit statistics of the velocity field, scaled so that βF is constant, are
expected to converge to finite values. This implies that L, σ/F and ε/F3 should be
independent of F for large F . In the experiment this is reasonably well fulfilled. The
standard deviation of L and σ/F are 3% and 4%, respectively, and there is no sign of
any systematic variation with F . We take this as an indication that the energy transfer
from the grids to the tank centre is independent of the effects of viscosity. Whether
the high Reynolds number limit is reached in the central region is more uncertain.
The standard deviation of ε/F3, where ε is measured in the central region, is 17%.
The values of ε/F3 are higher for F = 2 Hz than for the two other frequencies, but
this variation is within the estimated error bounds of ε.

3.2. The Richardson–Obukhov law

Having determined the energy dissipation we now turn to the investigation of
Richardson–Obukhov’s law for two-particle diffusion

〈|r(∆t)|2〉 = Cε(∆t)3, (3.18)

when r(∆t) is the vector separating two fluid particles, and ∆t = t−t0 is time measured
from an initial time t0, when the two particles were close together. The relation is
believed to be valid for inertial-subrange separations corresponding to time lags ∆t
ranging roughly from the Kolmogorov time scale to the Lagrangian integral time
scale. Ideally a series of experiments should be made in order to first determine
〈|r(∆t)|2〉 in the limit ν → 0 (or F →∞) for a fixed initial separation r0. Subsequently,
the limit r0 → 0 should be determined. In the actual experiment we have only varied
ν (i.e. F) by a factor of 2 and r0 by a factor of 1.5, both without observing any
systematic variation of C . In more practical terms the important thing is that r0
should be inside the inertial range, i.e. r0 � η should be obeyed.

In the experiments a large number of particles were added and kept well mixed
with the water. No ‘puff’ of particles was released; instead pairs of particles were
selected and their tracks were analysed. This procedure ensures a completely passive
and unbiased ‘marking’ of the pairs.

Examples of tracks of particles that initially are close together are shown in figure 3.
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Figure 3. Tracks of pairs of particles that are initially within 2 mm of each other. The tracks start
with a large black dot. (a) and (b) from run 20, (d) from run 16 and (c) and (e) from run 17.

Some pairs stay together for a while, others diverge almost immediately. A small initial
separation should be preferred, but for smaller initial separations we get fewer pairs,
and 3 mm seems to be a good compromise for the present data. Choosing 2 mm does
not change the results although it degrades the statistics. With r0 ∼ 10η is seems
reasonable to assume that the condition r0 � η is obeyed.

The resulting averages for all the runs are plotted in figure 4 as 〈|r(∆t)|2〉1/3 versus
F∆t. Using the non-dimensional time variable F∆t the curves should collapse on a
single universal curve if F ∼ ∞. It appears that they do, at least for the smaller
F∆t. The statistical uncertainty increases with t because the efficiency of the tracking
procedure limits the number of long tracks that can be obtained.
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Figure 5. A similar plot to figure 4 except that time has been corrected by T0 and axes are
logarithmic. The thin straight lines are ∝ τ3.

The plot should produce straight lines for r in the inertial subrange. Judged
from figure 2 the upper end of the inertial range is about 8 mm corresponding to
|r(∆t)|2/3 ∼ 4 mm2/3 or F∆t ∼ 1.5. The linear regime seems to extend somewhat
further, up to about 8 mm2/3 where the curves clearly bend away from straight lines.
This corresponds to separations equal to Lint. For very small F∆t the curves deviate
from straight lines, but with no sign of any dependence on F . Hence it must be the
‘ballistic’ regime 〈r2〉 ∼ 〈r2

0〉 + 〈δv2〉∆t2. The independence of ν (F) in this regime
confirms that the condition r0 � η is fulfilled. Fitting straight lines in the linear,
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Run Rλ C

15 93 0.56
16 91 0.40
17 81 0.52
20 104 0.49
21 97 0.52
22 78 0.44

Table 2. The Richardson–Obukhov constant C for six runs. Rλ (and ε) are determined from the
second-order structure function assuming CK = 2.

inertial-range, regime two parameters are obtained: (Cε)1/3 and a zero crossing T0.
There is little variation in the (negative) values of FT0 for the six curves. The interval
0.5 < F∆t < 1.5 was chosen for these fits. The upper limit corresponds to the inertial
range determined from the second-order structure function.

In figure 5 the curves of figure 4 have been translated in time by the amount T0,
i.e. τ = ∆t− T0 is used instead of ∆t. A τ3 behaviour is evident.

Table 2 shows measured values of C using ε determined by the second-order
velocity structure function method assuming CK = 2.0. The average value is

C = 0.5± 0.2. (3.19)

The error bounds do not simply indicate the order of magnitude of the experimental
scatter, which is ±0.06. They also include the uncertainties associated with the
determination of the energy dissipation ε. Lacking a definite value of CK is a major
source of uncertainty.

3.3. The distance–neighbour function

All three models considered here have solutions of the form

q(r, t) =
1

N〈r2〉3/2 exp [−H(r/〈r2〉1/2)], (3.20)

where N is a normalization constant. For Richardson’s model we have

NR =
35

3

(
2π

143

)3/2

, HR(ρ) =

(
1287ρ2

8

)1/3

, (3.21a,b)

and for Batchelors’s model

NB =

(
2π

3

)3/2

, HB(ρ) =
3ρ2

2
. (3.22a,b)

Note that N and H are independent of C for both models. For Kraichnan’s model,
where H does not have an analytic form, we use the numerical results in the Appendix.

In order to estimate q(r, τ) experimentally, we count the number of pairs in a
thin spherical shell of mean radius r at time τ = ∆t − T0. By normalizing with the
total number of pairs in all the shells at the given τ and dividing by the volume
of each shell we get an estimate of q(r, τ) as a function of r. It is reasonable to
restrict the analysis to time lags that are large enough for the distribution to become
independent of the initial conditions. Based on figure 4 we believe that this is the case
when 0.25 < ∆t < 1.25 s. In figure 6 we show a comparison of the three models with
the experiment.
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Figure 6. Distance–neighbour functions with 0.25 < ∆t < 1.25 s compared to the expressions of
Richardson ((3.21), solid), Kraichnan (dashed), and Batchelor ((3.22), dot–dashed).

4. Discussion and conclusions

We find that particle tracking is a promising technique which yields accurate
Lagrangian data. The three-dimensional two-grid turbulence (Rλ ≈ 100) is roughly
isotropic with a small secondary flow and the second-order structure functions are
consistent with a von Kármán spectrum. The inertial range, as judged from the
second-order structure function, is quite limited extending up to separations of about
8 mm or one third the integral length scale.

We find that the Richardson–Obukhov law is obeyed in the inertial range. The
estimated value of the Richardson–Obukhov constant is C = 0.5± 0.2. The law
remains valid up to separations comparable to the integral length scale, so that the
inertial range appears to be larger for two-particle diffusion than judged from the
second-order structure function. For the third-order structure function there is, on
the other hand, no inertial-range at all (Mann et al. 1999). However, such definitions,
which merely indicate where this or that quantity exhibits the expected inertial-range
behaviour, do not ensure that the infinite Reynolds number limit is actually met. We
did not detect any obvious Reynolds number dependence, but the range of Reynolds
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numbers obtained was also quite narrow. The experimental results therefore do not
rule out the possibility that C depends weakly on the Reynolds number.

Experimental results for the distance–neighbour function are shown in figure 6.
Data points collapse on a single curve, as expected for the inertial range.

The agreement between the data and Richardson’s expression (3.21) for the
distance–neighbour function is excellent. It is also clear that the results are in-
compatible with Batchelor’s model. Kraichnan’s model falls somewhere in between,
but clearly it does not fit the data. The data show no evidence of the change of
behaviour between small and large values of (r2/Cετ3)1/3 that characterizes Kraich-
nan’s model. The predictions presented here for Kraichnan’s model are based on a
Kolmogorov spectrum, i.e. an infinitely wide inertial range, and it could be argued
that a von Kármán spectrum is more appropriate. However, it is not likely that the
finite length scale in the von Kármán spectrum is important, because it is larger than
the separations of the particle pairs in question. If anything, we expect that such
a calculation would merely push Kraichnan’s solution towards Batchelor’s and thus
increase the difference between data and the model. The simplest generalization of
these experimental results is to expect Richardson’s solution also to be valid at higher
Reynolds numbers.

The corrections made in the Appendix change the value of C obtained from
Kraichnan’s model from 2.42 to 5.5.

There appears to be a conflict between our results and the recent measurements
by Virant & Dracos (1997), made at comparable Rλ, who find an excellent agreement
with Batchelor’s expression (3.22). However, their initial puff is larger than the integral
scale, so the experiment is not relevant for relative diffusion within inertial-subrange
distances. At the same time it should be noted that Jullien et al. (1999) arrive at
conclusions similar to ours for two-dimensional turbulence. Their value of C is 0.5,
incidentally the same as we find for three-dimensional turbulence.

The value C = 1.7 found in atmospheric experiments by Byzova et al. (1970) seems
to disagree with our result. A Reynolds number dependence is not the only possible
explanation. Shear or the presence of a non-zero heat flux could be important. It
should also be realized that the experiment addresses the related, yet different problem
of dispersion of a plume from an elevated continuous source. The plume width is
assumed to be equal to the width of a corresponding puff, which may not be correct.
The plume can of course be regarded as a series of puffs, like pearls on a string, where
the string represents the line through the puff centres. If this line is relatively straight
and the puffs are more or less round balls, it is clear that the plume width is equal
to the puff width. On the other hand, if the line is meandering or even occasionally
forming an S-shape, which plumes are known to do, then the plume width clearly
must be larger than the puff width.

It is thought-provoking that Richardson’s model, the oldest of them all, seems to
be most realistic. The scope of Richardson’s model does not go much beyond solving
this particular problem, and the same can be said of Batchelor’s model. Contrary to
this, Kraichnan’s LDHI approximation is a grand scheme designed as a general attack
on turbulence problems. As such it has been the subject of much admiration (Leslie
1973), and, although now old, it is still regarded as one of the most serious attempts.
It is therefore discouraging that the predicted value of C is ten times too large,
especially since LHDI has been applied successfully to a number of other turbulence
problems (Leslie 1973). The fact that the measured value C = 0.5 is smaller than
most models predict indicates a serious lack of understanding of the relative diffusion
problem.
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C CC
−3/2
K 〈r4〉/〈r2〉2 〈r6〉/〈r2〉3

Kraichnan (1966a) 2.42 0.68 2.27 8.86
Fitted 2.42 0.68 2.26 8.74
Corrected 5.5 1.6 2.3 9.7

Table 3. Original and corrected values for LHDI predictions.

The two-particle problem is simple, yet non-trivial and therefore an ideal test
case for turbulence modelling. For a long time technical difficulties connected with
Lagrangian measurements have prevented this interplay between theory and exper-
iments. A cure for this situation is the development of experimental techniques of
which particle tracking seems to be particularly promising.

We thank Professor Arkady Tsinober of Tel Aviv University, Dr Bjarne Stenum
and Mr Jan Nielsen, both of Risø, for many important suggestions for the design
of the experiment. Most welcome criticisms from Dr Leif Kristensen, Professor Hans
Pecseli, Dr Torben Mikkelsen and many others have improved the work substan-
tially. Financial support from the Danish Technical Research Council (STVF) under
contract 9601244 is gratefully acknowledged.

Appendix. A correction to Kraichnan’s derivation of C
Kraichnan (1966a) uses the following solution to (1.2):

q′(r, t) =
1

N ′(εt3)3/2
exp

(
− 9

4sF(s)

)
, (A 1)

where N ′ is a normalization factor and s = ε1/3r−2/3t. This solution, Kraichnan writes,
was suggested by the solutions of Richardson (1926) and Roberts (1961) for the case
where F is independent of t. However, comparing (A 1) and (1.5) it is clear that q′
is only a solution to (1.2) if F is a constant. In this Appendix we estimate C using
the correct solution (1.5). Solving the full set of LHDI equations is, however, rather
tedious, so we make the following shortcut. In LHDI F (called J‖ in Kraichnan’s
notation) is equal to

F(s) = 4α

∫ s

0

ds′
∫ ∞

0

dλ

(
1

3
− sin λ

λ3
+

cos λ

λ2

)
R(s′λ2/3)

λ5/3
, (A 2)

where R is a correlation function for Kraichnan’s generalized velocity field. R can
be determined by numerical solution of the turbulence part of the LHDI equations
(Kraichnan 1966b, c), but we make a shortcut and use the fitted analytic expression

R(ξ) =
1

1 + ( 1
2
πξ/IR)2

, (A 3)

where IR =
∫ ∞

0
R(ξ) dξ ≈ 1.87 (Kraichnan 1966b). The numerical solution to (A 2)

turns out to be represented well by the simple expression

F(s) ≈ as

1 + bs
, (A 4)

where the constants a and b are determined so as to yield the correct limit of F(s)/s



222 S. Ott and J. Mann

for s→ 0 and the correct value of F(s) for s = 2. Table 3 shows values of C , CC
−3/2
K ,

〈r4〉/〈r2〉2 and 〈r6〉/〈r2〉3. The first row contains Kraichnan’s values. The values in the
second row are similar to Kraichnan’s except that the analytic fit to F was used. The
third row contains corrected values based on the solution (1.5) and the fitted F . The
recalculated values in the second row indicate a fairly good fit with numerical errors
limited to a few percent. The new value C = 5.5 is more than twice as big the old one.

Kraichnan uses α = 1.77, which is the value determined by LHDI. This corresponds
to CK = 2.33, which is slightly different from the value CK = 2 used to determine ε

from the data. We have listed CC
−3/2
K because its experimental value is independent

of CK .
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